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Abstract

The Thirring and the Schwinger models both massless and massive are discussed as prototypes for
theories with topological quantum numbers and confinement respectively.

Bosonization of the fermion field is introduced from the beginning allowing a unified treatment of
various models, An analysis of their charge sectors clarifies the relation between the periodicity of
the potential in the bosonized version of those models and the existence of an additive quantum
number.

A brief outline of the essential features discussed which may survive in 4-dimensional space-time is
made in the last section.
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1. Intreduction

This paper will be devoted to a discussion of some aspects of two fascinating and in a way
complementary recent developments in quantum field theory.

The first one has to do with the fact that some systems have conservation laws totally
unrelated to any Noether Symmetry exibited by their Lagrangean. These conservation
laws might lead to new quantum numbers, whose topological origin has been extensively
presented in [7], and which can be associated with *“‘extended particles” such as the soli-
ton [2], the kink [3] and the ’t Hooft-Polyakov monopole [4].

On the other hand it might happen that a quantum number one would read off from a
symmetry of the Lagrangean will not exist in the physical state space (charge-screening)
and even more, that the particles one would suppose are carriers of that quantum num-

*) Based on lectures presented at the Latin American School of Physics, Universidad Simon Bolivar,
Caracas, Venezuela, July 1976.
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ber are absent from the physical spectrum of states (confinement). Such a possibility is
realized in the Schwinger model [5, 6] and is expected to hold in some non-abelian gauge
theories [7] where it could provide a most natural explanation for the non-observability
of quarks.

The major part of this article will review two-dimensional models. Two dimensional
space-time despite all its peculiarities has proved many times to be a fruitfull theoretical
laboratory where one can test a number of ideas in soluble models and many times draw
inspiration for more realistic theories. Needless to say, great care should be exercized in
order to separate those features which are unique in two dimensions from thos which have
a chance of surviving a dimensional boost. Surprisingly, in recent years, many aspects of
two-dimensional models once regarded as dimensional pathologies have found close
analogies in four dimensional space-time.

In section 2 we will start exploiting the possibility of parametrizing a two-dimensional
fermion field in terms of boson variables (bosonization). Bosonization has its historical
roots in [&]. Explicit bosonization formulas where used in [6] for the Schwinger model and
in [9] for the Thirring model, and found a remarkable application in Coleman’s equi-
valence proof [2] between the massive Thirring and since-Gordon theories.

The sine-Gordon theory is a prototype for theories with topological quantum numbers
[10] and the one which is most completely understood [18, 22).

In section 3 the Schwinger model [4, 6] and the massive Schwinger model [77] will be
discussed, as prototypes for field theoretical confinement. '

In section 4 we will attempt a unified discussion of the models presented in the preceding
sections from the point of view of charge sectors.

In section 5a brief outline of 4-dimensional analogs of the essential features of the models
previously presented will be made.

Stimulating discussions with K. D. Rothe and B. Schroer are gratefully acknowledged.
The author is also grateful to Dr. E. Laredo for hospitality at the Latin American School
of Physics and to R. Jackiw for many helpful observations.

2. The Thirring Model

a) Fermions in Terms of Bosons

As a preliminary step in the “bosonization” of the Thirring model [ 72] let us recall some
properties of the scalar massless field in two dimension. It is well known [13] that the
quantization of this field requires a “Hilbert space” with indefinite metric. This follows at
once from the fact that the formal two point funetion of the theory has an infrared diver-
gence (~ J dp;/|p:]), and by defining the correct two point function as the finite part of
the divergent integral one loses its formal positivity property. One can therefore in-
troduce a massless free field in two dimensions through the two point function

1 .
(0] ¢(2) $(y) 10 = —=log {{—(= — )* + 7a(w0 — yo)] w*} -2

and the requirement that all higher truncated functions vanish. The prime on the vacuum
serves as reminder that by reconstructing the theory from the Wightman functions [13]
one will be led to a space with indefinite metric. The mass 4?2 is an arbitrary regulator
mass.

As in any free field theory one can introduce composite fields corresponding to Wick
ordered polynomials or even more general functions of the free field. Of particular inter-
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est to us will be the Wick ordered exponentials of the free field,

rexp (i2(x)}: = exp {idd~(2)} exp {rdd*(2)} (2.2)

with ¢, ¢+ the creation resp. anihilation parts of the free field. Those exponentials form
the main building blocks of all the soluble two dimensional models and are the basis for
the bosonization formulas. The peculiar feature which allows the use of such exponentials
in interesting models is the fact that they can be inbedded in a positive metric Hilbert
space [13, 14]. To see that consider first a general Wightman function for exponentials
of a massive free field, which live in a positive metric Hilbert space

‘io! :exp lial(t’[xl)}: ---'-eXP {ilﬂﬁb(mn}}: EO::M =
= exp |} — Ly A — a5, m)). (2.3)
i=j

Since for vanishing mass the two point function of the massive field behaves as

4+{x iy 'm") == {Ol ¢(x) ‘1’(9) O\”m

m2e®

= _%; log [—-[(x — ) — ve(ry — Yol 1 } + O(m?) (2.4)

where p is Euler’s constant and the r.h.s. of (2.3) can be rewritten as

, ) wi i L 0w (72N

exp {%j — A A*(w; — xj, m)} = exp {é‘j— Lil {A-(z; — xj, m) + o log (Tug;)”
A ‘mPe?r i m2e .
¥ exp [— ); = log ( pyE )] exp [E:E (24;)% log ( pye )] (2.5)

we readily find

i s 'nz’?e's’.;l Ay Ba = . .-_,_,chzy inl8m : ) .
1—:210'\0_ (F) rexp () ... (_ﬁ) rexp 1A,P(x,): [0

= 05, (0] exp ik P(x): ...iexp iA,P(x,): (0. (2.6)
Defining new Wightman functions

(0] e, (1) « - €1,(n) [0) = O51, (0] :€XPp 1A1p(2y): .. 0ieXp tAn(n): |0 (2.7)

which belong to a positive metric Hilbert space since they are limits of functions satis-
fying positivity we can identify

() = rexp tAp(x): (2.8)

provided we associate to the exponential a conserved charge 2. In the following this
selection rule which allows the inbedding in a positive metric space will be always under-
stood whenever exponentials of zero mass fields appear.

From the well known fact that the zero mass field can be written as

P(a) = p(u) + $(v)
w =2y + 2, V=%, — % 2.9

22  Feitschrift ,Fortschritte der Physik”, Heft b
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where ¢(u) and ¢(v) are independent fields (the reader should not be confused by our
notational simplification of calling all fields ¢) the Wightman functions (2.7) factors
into a product of a function of the «’s and function of the »’s, so we can introduce a u
Hilbert space and a » Hilbert space. This allows one to enlarge the class of operators that
can live in a positive metric space, since the Wightman functions defined by

(0] €u,6,(21) - - €ape (@) 10)
= Oray, Oxpe, (O] 1exP (mb(2y) + 01(21)) 2 -2 XP 2(xph(2ta) + 2ab(2)): [0) (2.10)
satisfy the positivity property. Again we identify

exs(x) = :exp i(ad(u) + 0¢(v)): (2.11)

by assigning to the exponential a conserved charge « and a conserved charge 4.
Finally let us introduce the Thirring field [9] in bosonic language:

1/2
— (%) :exp i(a(u) + 4(v):

1/2
it (1*11.) rexp (—i(dd(u) + ab())):

in the basis where

01 i 01 W
"0: "1= "5= 0.,1 — = o
Y (1 0), Y (_1 0), y=vv, v (%) (2.13)

The parameter g ist the regulator mass of (2.1) which in the following we set equal to
one.

In order to reproduce the usual commutation relations [ 12] between the upper and lower
components of ¢ an additional Klein transformation has to be introduced. We need not
worry about that for the moment and only remark here that such a transformation is
possible since, due to the selection rule built in the exponentials we will have charge and
pseudo charge conservation.

Consider now the Dirac operator acting on y

. 8 , i 5
Uy = —== 1exp —i(0d(u) + ad(v) Zu: = 8:8.9y::

(2.14)
i 0 ! ;
10y = —— :exp i(ad(u) + 0¢(v)) 8,: = —d:0,by;:.
V2=
Following CoLEMAX [2] we introduce
: —fp é¢ . : &g
f* = g R &j,® (e = & = 1) (2.15)

which are obviously conserved and will be identified with the axial current and the
current of the model, we can rewrite (2.14) as

. @ 276 .
T e p= T Rt (2.16)
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is readily seen that the r.h.s. of (2.16) can also be written as

|
Hapt = lim (@ + &) p(@) + (@) jule — e) (2.17)
e—=({}

hich is the form given by Kramser [12] for the equation of motion.

he only remaining step in proving that the field (2.12) is indeed a solution of the Thir-
ng model is to show that the currents (2.15) do generate »® and gauge transformations.
o this end we recall that

O $w) ') 0) = —— log it — w)
47
(2.18)
e e s+ o s
0] d(v) (v) |07 = 5% log (v — ')
1d therefore
x i
[p(x), g ()] = {E gu —u') + v ev — -v'}} ()
(2.19)
¥ r o a ’ | X S ir
[$(), wal@"] = — 7 el — o)) + 1 elv — V) 122).
rom (2.19) and (2.15) we get the following equal time commutation relations
[ v ix = £ 0 — 9 ply) 3o — )
(2.20)

[7%x), w(y)ler = 4_3.5 (& + 0) vSply) oz — 1)

hich show that j0, 73 are indeed the local generator of gauge and 35 transformations.
, is convenient to normalize the currents in such a way that

.8 (6 — &) = —1. (2.21)
4n

'his normalization differs from the ones employed in [72] but is the conventional nor-

alization for the generator of gauge transformation. The »° transformations are then

nconventionally normalized.

rom the well known properties of exponentials of free fields one computes

(O] JT euse@i) [0) = OsarOzsuo [T 11 [8(ui — wj) /4= [ilw; — w;) it (2.22)
i ij=i

nd with (x;8;) = (+a, +48), (T3, Ta) and (2.12) obtain an arbitrary Wightman func-
jon for the Thirring model (The skeptical reader can also compare this result with
(LATBER’S [12] and convince himself that apart from a Klein transformation we do
1deed obtain the same Wightman functions).

'rom the Wightman functions one can now read off the scale dimension and the Lorentz
pin (there is no intrinsic spin in 2 dimensions!) of the field

&% + &% ar — o?

1, = — &= 2.9¢
ad 8z ! 8 v

3*
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so that one recovers the whole two parametric manifold of Klaiber’s solutions. In parti-
cular for 6 = 0, o> = 4z one has “bosonized” the free canonical spinor field.
Looking now at short distance expansions one has with (2.12)

{aud$ + ovd )

_1‘
g /) —_ o et
3:__(;‘ ?) #1(0) — v.e.v. (1)@ () @A™ 27

(2.24)

pe*(u, v) a(0) — vev. ~ ==

00 (70) 0 (jp)eim 27 (6w 8, + xv d,p)

which means that as expected the current (pseudo current) are the leading ¢ number
terms in the Wilson expansion of y“y and $p#ySp, and

—a® - fex,|led/am
yi*(u, v) pu(0) ~ [ B} o]
u,0—0

texp i(x + 0) ¢: (2.25)

which will play an important role in CoLeMAN’S equivalence [2].
In what follows we will be particularly intersted in the s = 1/2 solutions of the Thirring
model; with (2.21) and (2.23) this gives
4
5—&:—;, a4+ d=—f. (2.26)
It will also be useful to rewrite (2.12) in a way that does not rely on the %, v decomposition
peculiar to a free massless field, so that for spin 1/2 one has [13]

(i/d)y* ) 27 . °°_ 1 :
() = - e texp + fy°(x) + _ﬁj tf¢'(x’} da': (I) (2.27)

V2=

In going from (2.12) to (2.27) we neglected ¢(u = oc) — ¢(v = —oc) which is not zero
but is proportional to the pseudo-charge (cf. (2.15) and (2.20)). Expressions (2.12) and
(2.27) differ therefore by a Klein transformation which for & = 1/2 is just the right trans-
formation to produce anti-commutation between the g, and y, components at space-like
separations in (2.27) whereas in (2.12) they would commute.

The feature that has to be stressed in the “bosonization™ of the Thirring model is not
the amusing two dimensional pathology (cf. subsection 2¢) of being able to write ferm-
ions in terms of bosons but the rather remarkable fact that buried within the theory of
a neutral massless free field one has charged states, whose dynamics is deseribed by the
Thirring model. More precisely, besides the usual vacuum sector of the free theory one
has charged sectors whose charge is obtained from an identically conserved current
(2.15). Charge conservation is not a consequence of any Noether Symmetry of the La-
grangean but is due to the existence of finite energy solutions of the wave equation which
do not vanish at spatial infinity and which manifest themselves in the quantized theory
as inequivalent representations (sectors) of the free field algebra [&].

It is for the hidden richness which might exist in the inequivalent representations of a
field theory that one should be looking for in a more realistic situation.

b) Coleman’s Equivalence

The massless Thirring model discussed in subsection 2a is a scale invariant theory with
anomalous dimensions. It is therefore natural to regard it as the high-energy asymptote
of a massive model [16], which would be despite its dimension a much more interesting
model.
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Unfortunately, up to recently investigations of the massive Thirring model were limited
to perturbation theory in the coupling constant. In the end of 1974 CoLEMAN established
[2] & remarkable correspondence between the massive Thirring and the Sine-Gordon
theories. This means that in the same way as the massless Thirring model is related to
the many inequivalent representation of the free scalar massless field the massive Thir-
ring model will emerge from the many inequivalent sectors of the Sine-Gordon theory.
To understand how this comes about let us regard the massless Thirring as a short
distance fixed point [17] of a broader class of theories which will have a energy momen-
tum tensor given by

Tiw — T - T (2.28)

where the 7%~ is the fixed point energy momentum tensor which, due to the fact
that the massless model has been entirely written is terms of a massless scalar field,
is simply the energy-momentum tensor of a scalar massless field,

o o 2

dx, dx

Ty — :@ _'EE . g"" (qbg — (v‘f)b):

¥

and 67 a perturbation around the fixed point.

In order that the theory described by 7% has the massless Thirring model as a short
distance fixed point the scale dimension of 87 must be less than that of 7" so that
for short distances the perturbation becomes increasingly negligible:

dim 6T» < 2. (2.30)

If inequality (2.30) is violated one will be for short distances driven away from the
fixed point and the theory described by 7 (if it exists) can in no sense be considered
as a perturbation of the massless Thirring model (In statistical mechanics where there
is a natural lattice cut-off such a theory would correspond to a critical theory which
is driven to the fixed point at large distances).

The simplest perturbation one can think off satisfying (2.70) is a mass perturbation
pyp. From (2.25) we see that the renormalized operator corresponding to such a mass
perturbation is given by

1
N(py) = — icos B (2.31)

i
Pur — Pur % ‘08 rg(ﬁ: ger. {2.32)

Since the scale dimension of N(fy) can be easily computed to give

p* 5 a¢
dsy = - (2.33)
consistency with (2.30) requires
B < 8a. (2.34)

Once one has written the energy-momentum tensor of the massive Thirring model in
terms of the field ¢ one immediately recognizes that one is dealing with a sine-Gordon
theory. In the sense of a mass perturbation around the massless Thirring model one
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arrives at a “bosonization” of the massive Thirring model with (2.31) and [2, 15]

it /4)y
plz) = :expi—g—y"‘qﬁ(m) 4+ —— fd) x')dx,: e—(—_—‘—H( ) (2.35)
Y ks ﬁ Ly Hd)
j# = i & e (2.36)

where ¢ now is a solution of

O¢ + f"%-m din e, (2.37)

The steps involved in a mass perturbation are quite formal though, and it is desirable
to have a critical look at the final results; (a number of rigorous results have been
obtained in the meantime [18] by J. FrRouLICH).

To begin with let us remark that in two dimensions any conserved current can be
written in the form (2.36) [13, 19].

This a trivial result for a classical current, but in two dimensions is also valid for a
quantized theory with ¢ a local field. In higher dimensions one can always write a
conserved classical current as §« = @,F*. Locality of the field F* however can only he
achieved if the theory contains “photons” [20]. The fact that there are no photons in
two dimensions allows for the local integrability of ¢

x
def 21

Pla) = Jula’) da'®

[ L (2:38)
(dx'* dz,’ < 0).

Locality of the field ¢ defined by (2.38) is obvious from the path independence of the
r.h.s. of (2.38). ¢(x) measures the charge to the left of x. If the current belongs to a
theory w hlch is scale invariant at small distances the Schwinger term in the equal
time commutator of j° with 4! is finite and one can adjust § so that ¢ satisfies cs,nomcal
equal time commutation relations

[$(2), ﬁi’(x’)]E.T = W(x; — ). (2.39)
Consider now the equation of motion for ¢

O¢ = F(d). (2.40)

Commuting (2.38) with a charged field and using (2.40) one finds the periodicity
condition

F (¢ + %) — F($). (2.41)

The simplest solution to (2.41) is the sine-Gordon theory. For § sufficiently small one
can introduce higher harmonics corresponding to perturbations other than the mass
term that are asymptotically soft [20].

As in the case of the massless Thirring model the existence of charged sectors is related
to the existence of solutions of the wave equation which do not vanish at spatial in-
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finity with

2m
Q= (9(00) — d(—o0). (2.42)

The existence of such (finite energy) solutions of (2.40) and their interpretation as
particles in a quantized theory was pointed out in [3, 22]. Classically they are called
solitons.

Let us look now more carefully into the equation of mation (2.37). We should first ask
ourselves what do we mean by ::in a interacting theory. The simplest answer and the
one adopted in [2, 75] is to define it via Wick’s theorem by subtracting the singularity
of the free two point function, for instance

1) = lim {q’)(x) Pla — &) + -1— log s"}. (2.43)
=+ 4m

Is this a consistent prescription? Will it lead to a well defined equation of motion and

finite expressions for (2.31) and (2.35)2

The minimal consistency requirement is that the theory described by (2.37) should be

asymptotically free. If this is the case the leading singularities of :sin f¢: can be

computed from the massless free theory

(0] :sin pp(e): :8in fp(0):10) ~ (2.44)
e==0

(2) 3

and therefore writing a Lehmann-Killen representation for the two point function

(O] $(a) $(0)] 0) = [ o(u?) A+(x — y. u) dp* (2.45)
we have from (2.44) and (2.37)
o(u?) ~ (u2)F -3, (2.46)

As expected this is only compatible with the normalization condition (2.39) which
implies
=]
Jo(u?) dp® =1 (2.47)
if the inequality (2.34) is satisfied.
Consider now
: : .. Om .
O [—O¢(=), d¥)]ex 10) =1 (0] s B? cos fp(x): |0) 0z — 1)

o0

=~ g [ ()R- dp2(ay — ) (2.48)

which shows that if * = 4z Wick ordering will not be enough define the mass operator

(2.31). Since f* = 4z corresponds to the free massive model and the coupling constant

defined from Eq. (2.16) is
270 4= .
G=——=a|l —= 1(2.49)
7 ==(1-7) :

we see that for repulsive coupling a more refined definition for the normal produet is
required. LEHMANN and STEHR as well as ScHroER and TrRuoNG [21] have investigated
the free massive Thirring model using a normal product definition in which the true
n point functions are subtracted. In this way they are led to a form of the equation of
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motion (2.37) which does not exibit explicitly the periodicity (2.41). An alternate pro-
cedure which keeps the periodicity condition will by highly desirable and can be probably
achieved along the following lines: to begin with let us identify the source of our
troubles for 47 = * < 8x. Equation (2.31) for the correspondence between the mass
operator and cos fi¢ has been obtained on the basis of the short distance expansion
(2.25) valid for the massless theory. The reason that the usual leading a number singu-
larity is missing from (2.25) is the p® invariance of the massless theory, allowing then
for a multiplicative renormalization of the mass operator. In the massive theory how-
ever we will have a c-number singularity which although softer than 2dy might be
strong enough to require a subtractive besides a multiplicative renormalization. For
clarity let us start with the case of the free massive Thirring model. Direct computa-
tion gives

7 + &) (@) ~ = log &% + N[py] (2.50)
e J

where in this case N[§y] is the finite operator defined by Wick ordering with respect
to the fermions. From (2.50) we immediately see that the ¢ number term although
missing for m = 0 appears as a subtractive renormalization for m == 0. In the general
case we will have

1
Plx + &) plx) ~ fler) + e Nlwy) (2.51)

with N[py] a finite operator normalized in such a way as to have zero vacuum expecta-
tion value and from (2.35), (2.48) f(¢) should be given by

7T
fler) = (2= —FT/i6m | 6,?132]39{8) ds (2.52)

with g(s) given by (2.43). The ansatz (2.51), (2.52) leads to:

a) for f® << 47 the correspondence (2.31) is maintained up to a harmless additive
constant.

b) for p* = 4z one must subtract a logaritmically divergent counter term from
:cos 4x ¢: in order to have a well defined operator in accordance with (2.50).

¢) for 47 = * < 8z an infinite subtraction must be made. The singularity of f(e)
is always less than 2dy corresponding to the vanishing of the ¢ number term in the
asymptotic ® invariant theory.

All this leads us to propose as a correct definition of normal product valid in the whole
range 0 < 2 < 8z

N[¢#90] — lim :€i#9U): — (0]:£891: |0). (2.53)
f—8

Definition (2.53) would leave unchanged the since-Gordon equation (2.27) as a result
of the antisymmetry of the sine. It is a tempting conjecture, in so far unproven even
far the free § = }/4x case, that the only operator of the sine-Gordon theory which is
not rendered finite by Wick ordering is the mass operator.

For % <€ 1 (weak coupling regime for the sine-Gordon theory strong attractive coupling
for the Thirring model!) a number of very interesting results have been obtained using
semi-classical methods [3, 22], e.g. Jackxw [40].
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¢) Spin a.llld Statistics in Two Dimensions [23]

It can be readily recognized that the essential feature of two dimensional world which
allows one to “bosonize” fermions is the absence of intrinsic spin, and therefore no
true Spin-Statistics Theorem. What one normally ecalls “spin” in two dimensions is
the Lorentz spin i.e., the transformation properties of the wave-function or field operator
under Lorentz transformations. As long as there exist one particle states one ecan
(trivially) carry through Wigner’s [24] famous analysis for a two dimensional space-
time to conclude that one particle states can always be chosen to transform as secalars

U(A) |pep,) = |eosh Apy -+ sinh ip,, cosh ip, 4 sinh Ap,). (2.54) -

Clearly one is also free to introduce an equivalent description with

— 7 -} _
[PoPr)s = (&;‘:’!—l‘) | PoD1) (2.55)
implying a “spin s’ transformation law
U(4) |pps = e pa)s- (2.56)

The possibility of assigning different Lorentz spins to the same state corresponds in 4
dimensions to the well known fact that a (free) particle of intrinsic spin s can be described
equivalently by many relativistic wave equations transforming differently under the
Lorentz group.

If there are zero mass states in the theory one can have a larger symmetry group such
as the conformal group and this reflects itself in the fact that the different “spin”
solution of the Thirring model correspond to different representations of the conformal
group [9, 25].

For a massive theory however, the “spin® one assigns to the states is entirely a matter
of convention. This is well known.

What is perhaps more surprising is that in a sense to be made precise below the sta-
tisties in a twodimensional field theory is also conventional. This is typically two
dimensional and has no analogy in higher dimensions. In a field theory what one
ultimately calls statistics is the statistics obeyed by the asymptotic (in the old L.S.Z.
sense of the word) free particle states. Suppose for definitness those states were hosons

Py =a*(p)10), [a(p), a*(p)] = é(pr — p1') P° (2.57)
[e(p), a(p)] = [a*(p), at(p")] = 0.

Consider now
{==]

bH(p) = af(p)exp [ — 7 f at(p’) a(p’)

p.:

dp,
£, (2.38)
Po

The b’s satisfy canonical anticommutation relations i.e. they are fermion operators.
This simply means that there is a one to one mapping between antisymmetrical and
symmetrical p-space wave functions :

falp, ') = e(py — 21") folp, P) (2.59)

which allows one to interpret any bosonic state in terms of fermions and vice-versa.
Although in higher dimensions similar mappings can be introduced they do not share
with (2.58, 2.59) the property of being Lorentz invariant.
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One could be formally tempted introduce in two dimensions a generalized continuot
statistics (not pqm%atlstlcsf) by replacing & in the eq}onent of the r.h.s. of (2.58) b
an arbitrary number s 0 < s < 2z. However if one demands in accordance with gener:
principles that the Fourier transform of the momentum space wave function deseribe
probabilities of (approximate) position measurements the simultaneous requirement

[Fla, 2 = [f', 2% If(p, p)® = |f(@", p)® (2.6(

restricts our choice of s to be 0 or z.

Our assertion that the assignment of Bose or Fermi Statisties to the particle states of
given two dimensional quantum field theory is entirely conventional seems to contradic
the well known fact (valid also in a two dimensional world) that a periodic table o
elements requires fermions.

The apparent paradox is resolved by realizing that to find the energy levels of an ator
with a given local potential one needs an at least approximate notion of localizatior
(Allowing for the highly non-local interactions induced by the mapping (2.59) one ca
have a Bose system exhibiting the same energy levels as a Fermi system with locs
interactions.)

In a field theoretical context the notion of localization comes from the fact that a fiel
y(x) is supposed to create “something” in the vieinity of z. The problem in two dimen
sions is that there are many fields, loc-al with respect to themselves but not with respec
to each other that carry different notions of localization, and different statistics.

Let us illustrate this point in the massive Thirring mﬂdel The conventional deseriptio
“is in terms of a fermion field y which will via an 1..S.Z. asymptotic condition lead to
particle interpretation in terms of fermions. On the other hand using ¢ as given b
equation (2.38) on can introduce a Bose field

y l:.t’;) I\* pila2) B (x)° 11{)[:3"))} \ (Jbl

which will lead to a description of the Thirring model in terms of bosons. In order t
avoid the technical problem of defining the correet normal product in (2.61) one coul
use an operator afiliated with a finite region

w = =i OUIy(f) (2.62
[Hayde =1

which will commute with its translate for sufficiently large space like separations an
used as the interpolating operator in a Haag-Ruelle collision theory will lead to Bose
statisties for the asymptotic free particles of the model.

One could try to argue that in the Thirring model the Fermi description is preferec
because in this case we have formally an underlying canonical structure for the fermios
tields,

Besides being mathematically u_uplemse since a true canonical structure exists onl;
for free fields the physical meaning of a such a guiding principle is quite obscure.

As a result we see that in a two dimensional field theory one has the freedom of assigning
any statisties to the asymptotic free particles depending on what field we choose t
represent the localization properties of the theory.

3. The Schwinger Model

The Schwinger model [5, 6], quantum-electrodynamics of massless fermions in twe
dimensional space-time, is a standard soluble example of a theory where there are n
particles carrying the quantum-numbers one would associate with a continuous sym
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metry group of the Lagrangean, having been thus proposed [26] as a prototype model
for Quark Confinement.
It can be formulated in terms of the equations of motion

ik ,__Gu plx) + —i lim (A, (x + &) p*p(x) + pplx) A (x — &)} (3.1)
oxf =
ﬁ Fer(g) = —ejr(x) (3.2)
car i

where
Fer — ppde — G4

and j#(x) is the gauge invariant current

j#(x) = lim [@{x + &) y*p(x) — (O] gz + €) pyry(x) |0) (l — 'Ecs-“A#(.c)]J. (3.3)
As in the case of the Thirring model we can look for solutions of (3.1) and (3.2) in the
form exponentials of free fields

12 ity
pla) = Eif:))“ gitrl4)* rexp o{m)2SE(x) : (L_ ) (3.4)

eiog

with 6, 6, arbitrary ¢ number phases and u the mass of the free field .
Applying the Dirac equation to (3.4) and using

Y = ey,
we are led to the identification

1/2
Arz) = — (’”33 [e# &, (x)) (3.5)
with (3.4) and (3.3) we readily find
1
jx) = — —= e*e, X(x) (3.6)
e
and therefore from (3.2) we obtain
o2
(l:! -+ —) Zlx) =0 (3.7)
w=rc¢f [’;

This means that X is a free field of mass e‘f}’;. Being a massive field the selection rules
we had to introduce to properly define exponentials of massless fields in section 2 do
not come into play now. This is related to the spontaneous breakdown of gange and o®
invariance [6].

At first sight it seems surprising that our ansatz (3.4) which ought to represent a fermion
field commutes with itself at space-like separations. We should remember however
that y(x) is not a gauge invariant operator and therefore its commutation relations
depend on the g-number gauge employed.

It is possible to obtain (3.4) by means of a gauge transformation [6] starting from the
more conventionally looking Schwinger solutions [5].

The “observable” content of two dimensional quantum electrodynamies should be
entirely given by the algebra of gauge invariant operators. Besides the electric field
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and the current one can introduce the properly defined gauge invariant bilocals [6]
v

corresponding to the formal bilocals y(x) {exp e f A#(z) dz,} v*(y), which in our gauge
can be written as &

4
Lw, y) = N(x — y) :exp i)z {y,°Z(x) — [ e~ 8,2(2) dz, — 1,2 Z(y)): (3.8)

x

with the normalization matrix N(z) given by
— ‘u‘eitﬂ'r—ﬁ"ﬂ + 3
; I (2o &+ 2 2
N@E) = —5 e ) : (3.9)
Py 4 pe—H0—10)+p — i
2 (o — 2)

With this normalization one ensures on one hand that the bilocals transform as if they
were bilinear in “spin 1/2” fields and on the other that the gauge invariant current is
simply given by

j#lr) = — lim {Tr (yoyﬁ‘T{:t: +e, ;r)) — (0] Tr (y%4T(x + &, x) '0‘;} (3.10)

e—=()

One can formally rewrite 7'(x, o) for ecual times as
3 T, Y

T(w, y) = N(x — y) 1yp.(x) p5(y): (3.11)
with
e W8] S ‘
1) —= gty : 5y - e . ) 3.
pelz) = ¢ (T exP iVadyZ@) + [ 2@ da J, it (3.12)

with y,(x) differing from y(x) by a g-number gauge transformation. In this new gauge
we have

A, =0
4= [ E@)de' (3.13)

Le. the Coulomb gauge.

As in (2.27), (3.12) represents an anticommuting “field”. Contrary to (2.27) the expres-
sion for the Coulomb gauge fermion operator cannot be given a precise meaning. The
reason for that is that the equation of motion for X' (3.7 violates the periodicity con-
dition (2.41), and therefore no charged fields can be introduced in the theory.
Physically [6, 26] one can understand this feature in the following way: 7'(x, i) creates
a charge dipole with an electric field in between (in accordance with Gauss law). y,.(z)
would correspond to a situation where one of the charges is removed to infinity. In two
dimensional space time the growth of the Coulomb potential with increasing separations
implies an infinite cost in energy to separate the pairs. As a result the physical state
space does not contain any excitations corresponding to the original fermions.

The only physical excitation of the theory are the 3 mesons which can be viewed as a
fermion-antifermion bound state.

Quantum electrodynamics in two dimensions contains solely the vacunm sector. The
symmetries one reads off from the Lagrangean namely gauge and 9% invariance do not
correspond to any quantum numbers in the physical state space. Gauge transformations
of the first kind are generated by the current (3.6) which leads to an identically zero
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charge. On the other hand there is no conserved gauge invariant current generating 3
transformations as a result of the two dimensional analog of the axial-vector anomaly
[27] that is, with §5 = g, one finds

8,%(@) = 5= ew(z) (3.14)

and the corresponding conserved non-gauge invariant pseudocurrent vanishes identically

L LY (3.15)

T

One has therefore a spontaneous breakdown of both symmetries without any Goldstone
hosons [28], which here however is intrinsic dispensing the use of any Higgs field [29].
The phases introduced in the r.h.s. of (3.4) characterize the different vacua corresponding
to this spontaneous breakdown. Although the disappearance of quantum numbers
is a common feature of any theory with a spontaneous symmetry breakdown, the
peculiarity of two dimensional quantum-electrodynamics is the simultaneous dis-
appearance of the particles that would carry those quantum numbers. This happens
because gauge invariance of the second kind strongly restricts the class of allowed
“ohservables” and physical states of the theory: the original fermions of Schwinger’s
solution [5] are simply gauged away.

To be more specific, in a non-gauge theory with a continuous spontaneous symmetry
breakdown the charge operator @ cannot be defined [30]. One can however still recognize
in the incoming and outgoing states the (no longer degenerate) multiplet structure of
the theory. This is no longer the case in a gauge theory with spontancous symmetry
breakdown, as the Schwinger model clearly illustrates.

Although absent from the physical space, the original fermions make their reappearance
of one considers the short distance behaviour of the Schwinger model. The leading
singularities of Green’s function of gauge invariant operators such as the current and
the scalar and pseudoscalar densities

—lim Tr p*T(@ + &, 2)} — ;-‘2 scos (4 Z(w) + (6, — 0,)): (3.16)
e—+{} T
e . — et 2 — o : s
—a lim Tr {p"5T (2 + &, 2)) = —5, ‘sin (} 4 X(x) + (0, — 81)): (3.17)
g—{) i

can he obtained by letting the mass of the X' field tend to zero. This bring us back to
the sitnation discussed in section 2 and therefore the short distance asymptote of two
dimensional g.e.d. is nothing but the Thirring model with § = }-ﬁ:r, that is a free theory
of charged massless fermions. -

The fact that under short distance probing the theory behaves as if it contained particles
which do not manifest themselves as physical states has been recognized by CASHER,
Kogut and SusskinD [26] as being precisely what one desires of a theory of quark
confinement.

After this brief recapitulation of the massless Schwinger model we can follow CorEman,
Jacktw and Susskinn [77], and in the same spirit as was done for the massive Thirring
model introduce a fermion mass. In bosonie language, using the fact that the massless
Schwinger model is isomorphic to the theory of a free X' field with mass u = e/yn and
expression (3.16) for the mass operator we are imediately led to a theory described by
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the energy momentum tensor

Liv

T’"=5“‘Ef’2—%( AXD ’E_Mzg_;__'u (]/473‘{- —6))) (3.18)
T
and therefore to the massive sine-Gordon theory:

(O + ut) E + 27 l”ey :sin (]uh Z+ (0 —6,):. (3.19)
7T

As in the massless Schwinger model the absence of charge sectors can be seen from the
fact that the explicit mass term in (3.19) violates the periodicity condition (2.41). On a
classical level this results from the non-existence in general of classical finite energy
solutions of (3.19) which have a different asymptotic behaviour for z; — +oc. For
0y — 0y = 7 and dm sufficiently large there are however classical kinks [3] which do
not in the quantized version lead to an additive charge quantum number (cf. section 4).
As before we can introduce gauge invariant bilocals as in (3.8)

v
T(x,y) = N(x,y) :exp ]/; {}rﬁE(m} — fs*" 6,2(z)dz, — yusf{y}}; (3.20)

and with (3.10) we get the gauge invariant current

1
R T (3.21)

Y=

in complete analogy to (3.6). We should however at once refrain from trying to carry
over to the massive Schwinger model the remaining correspondences (3.4) and (3.5).
They are clearly incompatible with Maxwell’s equation if X satisfies (3.19). The reason
is that the particular gauge were the solutions of the massless Schwinger model were
obtained does not survive a mass perturbation. If one uses the freedom given by gauge
transformations of the 2nd kind one can formally go over to the Coulomb gauge were
(3.11), (3.12) and (3.13) hold and obtain then a formal bosonization of the mupled
massive Dirac and Maxwell equations. This has at most a heuristic value since as in
the massless case the Coulomb gauge operators do not exist.
A better insight into the behaviour of gauge variant operators which at the same time
throws an additional light into both the problem of confinement and the structure
of the Dirac equation of motion (which we did not discuss in connection with massive
Thirring model), can be obtained by regarding quantum-electrodynamies both massless
and massive as a limit of a vector-meson theory [6, 31, 32] (Thirring-Wess model).
This means we explicitly break gauge invariance of the 2nd kind by a bare mass term g,
for the vector meson and then study the limit of 4, — 0. Maxwell’s equation are then
replaced by

8, L ul?Be = —ejr (3.22)

with j# defined by the gauge invariant limit (3.10).
For the fermion field, which as long as g, == 0 will be a well defined operator we make
the ansatz, suggested by the analogous expression in the Thirring-Wess [26, 32] model

o0

N — ginlty® [FE W g .5_ . _l_‘)_ o sl (Y ¢ 2
p(r) = e - texpi dy (x) 4 ﬁ $(x') dx’ + pPaZ(x)\: I (3.23)

[ P C P E T T e
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and for the vector meson field B again by analogy we take
Br = ———; (aa-‘" ¢,X + %(1 — %‘;) ™ E,¢). (3.24)

a and § are constants to be determined in terms of g, and e. In the Thirring-Wess
model a simultaneous solution of the coupled Dirac and Proca equations is obtained
if [6],

2
(EI (Po + e;)) =0, O¢ = 0. (3.25)
From (3.23), (3.20) we find that the mass operator is
. ) uer R
— lim Tr (°T'(x + &. 2)} = =— :cos (B¢ + 2aX): (3.26)
e=>0 2n

(Implicit in our ansatz and for the remainder of this section we take fl, — 6; = 0).
The massive (in the sence of a fermion mass) Thirring-Wess model should therefore
correspond to fields X and ¢ satisfying

(O 4+ )X + ”é";” ? :sin (B¢ + 2aZ): = 0 (3.27a)
2
ut = po® + %

‘8‘5’2"’""‘? sin (8¢ + 2aZ): = 0. (3.27b)

The gauge invariant current is given with (3.23) and (3.20)
j#x) = — lim Tr (T (x + &, z)] = —g— v — G g 0.2 (3.28)
=0 <7 7

We shall now determine a and g using the Proca equation (3.22). With (3.24) and
(3.28) one can rewrite (3.22) as

D(aE—i—i;w( 41)¢)+ z%{”"2’3(1—4—1)+f§}¢=0. (3.29)

£ [
Comparing (3.27) with (3.29) we find out
47 e2 ﬁ* 4= e
- — —_— e — ?' —_——_— = - = e—— .:

as a condition for satisfying Proeca’s equation. Note that (3.30) is independent of the
fermion mass and coincides for zero fermion mass with the values given in [6]. It re-
mains now to show that Dirac’s equation for y given by (3.23) is compatible with the
identification of B* given by (3.24) as a vector meson field coupled to the fermion
field.
Writing [32]

() = Hm :eide®) : = lim Z'(¢) ei4e® (3.31)

e—=0 e+
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where a smearing of radius e around 2 has been introduced, and using

1
deideln) — j‘ it deDY 4 (x) e=i D) (fjpideln) (3.32)
0

one readily gets applying Dirac’s operator to (3.31)

wp* () + e tprBL(x) p(x):
1

— 0 f he(yy) dyy [ €24« dmper :sin (B(y) + 2aZ(y): e 440 djy(x) = 0 (3.33)
0

with B* given by (3.24) and £, (y;) — 0(y; — ;). The last term on the Lh.s. of (3.33)

e+

can be rewritten [75, 28], using the fact that A, acts as a shift operator on ¢, as an
equal time commutator. Last term of (3.33) is

é T 1
— 7 LT dy, cos (Bély) + 2aZ(w)):, p@]er (3.34)

27

in perfect agreement with what one expeets from the Hamiltonian form of the equation.
of motion. Using now the short distance singularities in the product of the mass and y
operators one finally arrives at

o p(x) + e i By(x) y yp(x): + dmy(x) =0 (3.35)

which completes our discussion of the massive Thirring-Wess model.

Notice at this point that the reason we get an explicit mass term in (3.35) is due to the
fact that the scale dimension of our mass operator with f# and a given by (3.30) is one.
A similar ecalculation for § < J4x in the Thirring model would lead to a vanishing
equal time commutator in (3.34) and no explicit mass term in the Dirac equation of |
motion. This does not mean that the massive Thirring model for g < },’E is really massless
but simply reflects the fact that in quantum field theory one should not expect that
the form of the renormalized equations of motion uniquely defines the theory. It is
clear that in general :y,j#p: does contain hidden mass term that is :y,j4p: = N(y.j“p)
+ ey with N(p,j*p) so normalized that (0] N(p.j*y) |1) = 0.

After this small detour into the Thirring model let us come back to the problem a
hand that is recovering the massive Schwinger model as an limit when p, — 0 of the
massive Thirring-Wess model.

First notice that as long as u, == 0 one has a local solution of ones field equations ina
positive definite Hilbert space. The fermions are not confined since the periodicity of
the equation (3.27h) for the ¢ field allows for infinite line integrals in our ansatz (3.23)
and therefore charge sectors. When gy — 0, f — 0 and (3.23) becomes ill defined. It is
suggestive that the divergent part has the form of a gauge term and therefore, should
not participate in gauge invariant quantities. Indeed considering

¥ :
T(x, y) = N(x — y) :exp i{d(x) + e f Br(2) dz, — A(y)} (3.36)

we recover in the limit uy, — 0 our old finite bilocal (3.20). The ¢ field which in this ‘
limit becomes a massless free field completely decouples from gauge invariant operators,
such as the bilocals the current and the F#r. This decoupling explains how charge sectors
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disappear in the limit. The charged states of the Thirring-Wess model become orthogonal
to all the physical states. The ¢ field is pure gauge and any fermion build with it is
necessarily aphysical. The physical fermions became confined.

Although it is elear that the physical origin of confinement is the growing Coulomb
potential it is also important to stress that in a field theoretical context particles have
a clear meaning as such only as asymptotic incoming and outgoing states. Field theo-
retical confinement is much more dramatic than its classical counterpart: in the later
by pumping an (incredibly large) amount of energy into a bound pair one could have
the components separated by a macroscopic distance and identified as charged fermions;
what the Schwinger model teaches us is that in a field theoretical description of confine-
ment the confined objects are simply not there. One can however always investigate
the charge distribution of a dipole

1
) ) = = @l 212 ) (3.36)
n
with

L
|d) ~ exp —i V= [f 2(y, 0) dyl] 0) (3.37)
£
and a smearing around z; and %, being understood. In the massless Schwinger model X'
is a free field and one immediately sees that the total charge of the electric poles at
the end of string oscilates periodically in time with a frequency e/}, with an oscilating
current flowing along the string. This can be understood as coming from vacuum
polarization effects [26] with the electric energy of the dipole eja; — ,| being used
up to create virtual pairs. The massless nature of the virtual fermions accounts for the
fact that the charge distribution is unstable no matter how small |z, — #|. In the
massive Schwinger model on the other hand one expects that for a finite fermion mass
om there should be a critical length ez, — ;| ~ 20m below which there is charge
stability. In such a case one can understand that a quantum mechanical description in
terms of “particles” interacting via a growing potential can work for low lying bound
states as a first approximation to the field theoretical problem.

4. Remarks on Charge Sectors

A mathematically precise framework for the construction of the charge sectors of an
observable algebra has been set up by DorricHER, Haac and Roekrts [33] and was
applied in [§, 18, 34] to two dimensional models. In this section we will present an
heuristic approach to the construction of charge raising operators for the various
models of sections 2 and 3. In the course of this section the connection between existence
or non-existence of charged states and the periodic or non-periodic nature of the field
equations for the underlying scalar fields, will be clarified.

As in equation (3.37) consider a (smeared) dipole state

|d) = exp {ix [ h(xt, | d21) gL, 0) d21) [0) (4.1)

where h(a'y! | 2!) is a smoothed out 6(z — a') ()t — 2') and ¢ will stand generally for
either ¢ or X of the preceding sections. In order to have the exponential as a bona
fide unitary operator an additional time smearing is required whenever the scale
dimension of the source of the ¢ field is larger or equal to one. In the Thirring model
this means § = 4z and follows from the fact that in this case (2.46) requires that ¢
be smeared in space and time to be a well defined operator.

24 Zeitschrift ,Fortechritte der Physik*, Heit 5
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The dipole state (4.1) represents a pair of negative and positive charges, localized
around 2! and #* at time zero, with respect to the charge density operator

1
() = — eapla). (42)

One formally obtains a charged state by letting ¥, — o0 or x; > —oco. In this limit
the unitary operator ceases to operate in the original Hilbert space (vacuum sector) and
plays the role of an intertwining operator between inequivalent representation of the
observable algebra (charge sectors).

The Hamiltonian of the field being given by

A= %f dz' :¢* + (Vo)® + F(p): (4.3)
one can compute the energy difference between the dipole state and the vacuum
(A H|d) — (0| H|0) = |2* — 3| (0] :F(p — x): —:F(g):[0) + Ex) + E(y) (44)

where E(x) and E(y) are contributions coming from the neighborhood of a! and y*
representing localization energies, and use has been made of the fact that ¢ acts as a shift
operator on ¢.

Equation (4.4) shows the fundamental difference between the various models discussed
in the preceding sections. For the massless Thirring model F = 0 and one will obtain
a finite energy state by letting the two charges in the dipole to become infinitely
separated for any value of x. One has therefore a continuous infinity of inequivalent
representations correspondmg to the continuous spin solutions of Krarsrr [12. §].

If Fis penod:u with period « one has again a finite energy state for an infinite separation
of the pair in the dipole state. Successive application of the exponential in the r.h.s.
of eq. (4.1) to the vacuum will give rise in the limit |z; — #,| — oo to inequivalent
representations labelled by an integer number. This corresponds to the situation found
in the massive Thirring and Thirring-Wess models with ¢ standing for ¢. In the Schwin-
ger model on the other hand, the non-periodic nature # implies in (4.4) that no finite
energy charged state exists. The formal limit |#! — #'| — oo in this case leads us to
the formal Coulomb gauge formulation of the Schwinger model, whose pathological
features [6] arise from the fact that it is based on infinite energy states.

If in (4.1) one usesinstead of k(xy | z) an arbitrary function vanishing for z —» —oo and
equal to 1 for z — +-co an variational ansatz in (4.4) one makes easy contact with the
semi-classical approaches of [3, 22].

One should be warned at this point of the fact that, although for semi-classical compu-
tations one can always use coherent states of the form (4.1), the existence of charged
states as limits of dipole states of the form (4.1) requires a periodic F. This is of in-
terest in connection with the “kink™ of GorLpsToxNE and Jackrw [3] where non trivial
sectors exist for a non-periodic F satisfying a symmetry condition

F(p) = F(—9¢)
which is spontaneously broken
(®) =0 +

Although one can always adjust « in such a way that in (4.4)

0| :Flg — ): — :F(g): |0) =0 (4.5)

it a
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so that the expectation value of the energy remains finite as [s* — | — oo, it is readily
seen that in the “kink” case since

tFlp — x): £ :F(g):
for any x the energy fluctuations in the state |d) will diverge in the limit
(d| (H — (0] H |0))2 |d) — oo

&t — yt| —> o0.

This means that contrary to the soliton case the creation operator for a kink cannot
be written as

v}
p(x) ~ expix [ ¢(z, 0) dzt. (4.6)
&y

In order to construct a kink operator one should be guided by the symmetry of the
potential F(g). Such an operator must act as the identity on ficlds located at left spatial
infinity and as a transformation ¢(x) - —¢(x) for z' — oo.
Introducing for time ¢ = 0 the canonical decomposition of ¢, ¢ in terms of creation and
anihilation operators one goes over to a complex field y

1
x(: = — (L1 eik'z!
z(x1, 0) 2 f dlita(kt) e r,

The unitary operator
U, y*) = exp iz [ h(2t, y* | 2') z*(2%, 0) z(z4, 0) d2t

generates the transformation y — —y in the interval (¢%, y*) and applied to the vacuum
produces, the dipole analogue for the kink problem. Although ¢, ¢ are not strictly
local with respect to y they are quasi-local so that in the limit y* — oo, U(a", oc) effec-
tively acts on ¢’s very much to the right as a phase-space rotation of angle @, ¢ — —¢.
A natural candidate for the kink operator is therefore [35]

YPieink () ~ exp im f dity* (2, 20) y(21, 29). (4.7)
Ty

A comparison between (4.6) and (4.7) immediately shows that whereas the coherent
state is responsible for charge sectors with an additive quantum number, the successive
application of the soliton operator (4.6) on the vacuum leading to inequivalent sectors,
(4.7) creates a sector which is most conveniently labelled by a multiplicative quantum
number (—1) since the successive application of two kink operators leads one to a state

o0
12 kink) ~ exp ¢ 27 [ d2'g*(z') 7(z') |0)

which is equivalent to the vacuum sector.

5. A Glance at Higher Dimensions

The charge sectors of the since-Gordon theory are, as it was argued in section 2, a direct,

reflection of the existence of finite energy classical solutions with a different behavior

at 21 — - oo corresponding to a charge associated to the identically conserved current
=L e (5.1)

7T
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given by

Q— f 7(0) dat = L (4(00) — g(c0). (5.2)

The simplest generalization of this feature to 4 dimensional space-time is given by the
't Hooft-Polyakov monopole [4].
In higher space-time dimensions very little has been done beyond the classical or semi-
classical [2, 22, 36] approximation. We will briefly describe the classical features of the
't Hooft-Polyakov monopole which parallel the sine-Gordon theory.
One starts with an SU(2) gauge theory coupled to an iso-triplet of Hicas [29] fields
whose vacuum solution is R R R

(P) = ot A,=0 (5.3)
with & a constant unit vector in isospin speae. Finiteness of the energy requires that any
solution should behave as the vacuum at spatial infinity

Bl >0, D002, (5.4)

P00 p—=00

where D, is the covariant derivative. From

Fr = pAr — gvAr 4 eAr AL (5.5)
one can build a gauge invariant “electromagnetic” field
I b (5.6)
0
which leads to an identically conserved magnetic current
bt = egmiog By et =0, (6.7)

The simplest non trivial boundary condition of the field configuration satisfying (5.4)

is given by .

TRV Y (L . (5.8)
] o i ial 72 .

with 7 the spatial component and a the iso-spin index. A static solution satisfying (5.8)
was proved to exist by 'r Hoorr and Poryakov [4]. The magnetic charge corresponding
to (5.7) can be evaluated by Gauss law to be -

fk”dsx sz dS = % (5.9)

S—oo

The analogy between (5.2) and (5.9) is perfect. In the quantized version one therefore
expects this theory to exhibit magnetic sectors corresponding to multiples of the funda-
mental magnetic charge (5.9) [1, 40]. 3

This model was recently enriched by HASEN¥RATZ and 1 Hoorr and Jackrw and REser
[37] who introduced besides the Higgs field an additional iso-spinor scalar field. The
bound states of the magnetic monopole and the charged iso-spinor have half integer
angular momentum [38] and should therefore correspond to fermions arising from a
purely bosonic theory. One is therefore arriving at a 4-dimensional bosonization.
Gange theories also provide one with a rather plausible mechanism for confinement in
4-dimensional space-time [7]. [The main problem is to understand how a 4-dimensional
field theory might be effectively reduced to a 2 dimensional one.
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A simple example for such a reduction was provided by *r Hoorr and KoguT and Suss-
KIND [7]. Considering electrostatics in a dielectric medium one has

H— % , ”—fg‘f_a‘f X o
Taking
oo = 5 [ (V8P + i4? d%
and o
e(p) =0
¢—0

as a phenomenological deseription of infrared slavery the minimum of energy is obtained
as a result of two competing tendencies. On the one hand the electrostatic energy (of a
dipole) likes to spread as much as possible over the whole space. On the other hand the
medium wants to be in its ground state ¢ = 0 over as big a portion of space as possible.
The net result is that the electric flux lines will be confined to a thin tube with the
“Coulomb” potential between the pair growing linearly as in the two-dimensional case.

A similar confinement of flux lines arises naturally if one considers magnetic monopoles
in a relativistic version of a superconductor due to the flux quantization condition of the
latter [39].

The investigation of gauge-theories in a lattice by WiLsox and KocuT and SussgIxp [7]
also shows that there is a natural mechanism of flux quantization arising there.

Once an effective reduction of the 4-dimensional problem has been achieved one expects
that the Schwinger model provides one with at least a qualitatively sound desecription
for confinement.

Whether any of those new ideas will prove relevant for our understanding of high-energy
physics remains as yet an open problem. They do teach us in any case that a nonlinear
field theory has a much richer structure than one could suspect by doing standart per-
turbation theory.

After almost half a century of existence the main question about quantum field theory
seems still to be: what does it really deseribe? and not yet: does it provide a good des-
cription of nature?
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